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LOAD FOR STRUCTURAL MEMBERS

By Eugene-E. Lundguist
SUMMARY

The relations between load on the structure and rota-—
tion of a Joint can be used to estimate the lowest criti-
cal load after the egquation for neutral stability has besn
tested for three assumed ceritical loads, each of which is
less than the lowest eritical load.

The solutions of six simple problems are included %o
iliustrate the application of the method of estimating
critical loads and to reveal certain characteristics of
the method that should be known by the practical engineer
using it. Pour of these problems are concerned with mem-
bers that lie in the slastic, or long-~column, range. The
other two problems are concerned with members that lie in
the short-column range.

INTRODUGTION

One of the problems in the design of sbtructures is to
make certain that the compression members are stable un-
der the loads to be carried. For structures built with
the members joined to each other by frictionless pins, the
usual column formulas can be dirsctly applied to the de—~
sign of the compression members. For structures built
with the members continuvous at the Joints, however, the de-

sign of any one member is dependent upon the design of all
other members,

Reference 1 shows how the principles of the Cross
method of moment distribution can be uwsed to check the
stability of structural members under axial load and hence
the safety of the design., In this method, the critical
load for the system of members is calculated and compared
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with the applied load., If the critical load is greater
than the applied load, the members are stable. If the
critical load is less than the applied load, the system is
unstable-and a larger size for one or more of the compres—
sion members must be selected.

One disedvantage of any method of calculatling the crit-~
ical load for a system of structural members under axial
load is that, for each type of instability, there is a cor-
responding eritical load. In design, the lowest critical
load is the only one of interest. When the stability of a
group of structural members is checked, it is therefore the
lowest of these critical loads that must be calculated and
compared with the applled loads.

Although the two equations for neutral stabllity given
in reference 1 are algebraic in appearance, they are fun-
damentally transcendental in character with the unknown
criiical load entering in angles. The method of solution
used in reference 1 was to assume several valuee of the
critical load and to test one of the equations for neutral
stabilitye. If the first load in the series of assumed
loads is made sufficiently small, the lowest assumed load
that Jjust satisfies thig equation is the critical load de-
sired. ' .

Unless the designer is fortunate in selectlng the as-
sumed c¢ritical loadsg, considerable time and labor are re-—
guired to find the lowest critical load. In order t¢o make
the theory of reference 1 more useful in practical calcula-
tions, & method of estimating the lowsst critical load 1s
bresented in this report.

In thig paper, as in reference 1, it is assumed that
the members lie in a plane and that buckling occurs in this
plane, It is further assumed that the joints of the struc~
ture are held rigidly in space dbut are free to rotate un-
der the elastic restraint of the interconnecting membersd.

DEFINITIONS AND SYMBOLS

The following definitions of stiffness and carry-over
factor are the same as those given in references 1 and 2.
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Stiffness

If a member is on unylelding supports at sach end,
the moment at one end necessary to produce a rotation of
one=fourth radian of that end is called the "stiffness.”
The stiffness of a2 member will depend upon the amount of
restraint at the far end. In the derivation of the crite-~
rion for stabllity as given in reference 1, three types of
restraint at the far end are considered. The symbols used
to designate the stiffness for the different types of re-—
straint are:t

S, far end fixed.
§t, far end elastically restrained.

8%, far end pinned.

The stiffness of a member computed according to the
foregoing definition ig one~fourth that computed accord-
ing to the definition given in references 3 and 4., In the
Cross method, the relative stiffness of the members is of
importance and not the absolute value. The foregoing def-
initlon was selected so that the stiffness of a member of S
constant cross section_with no axial load and fixed at )
the far end would be EI/L instead of 4EI/IL.

Carry-Over Factor

If a member is on unylelding supports at each end and
a moment is applied at the near end, the ratio of the mo-
ment developed at the far end t6 the moment applied at the
near end is called the "carry-over factor.® 4s in the
case of stiffness, the carry-over factor will depend wupon
the degree of restraint at the far end of the member, The
symbols used to designate the carry-over factor for the
different types of resiraint are: -

C, far end fixed.
C!, far end elastically restrained.

C* = 0, far end pinned.
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Sign Convention

The sign convention used in this report is the same .
a8 that used in references 1, 2, and 4. 4 clockwise mo-
ment acting on the end of a member is positive. A coun-
terclockwige nmoment ecting on a joint is positive. An-ox-
ternal moment applied at a joint 1s consldered to act on
the joint. 4 positive moment. acting on the end of a mem-—
ber causes positive rotation of that end: : '

Symbols

E, modulus of elasticity.
ﬁ, effective modulus of elastlcity.
I, moment of inertia of cross gectlon of membser

about a cenitroldal axis normal to the plane

of bending. '
L, length of member.
W, +total load on the structure.
P, axial load in member (absolute value). ’
A, area of cross section,

¢y restraint coefficlent in the usual column formula.

k= % , radius of gyration.

= EI

J = P

.;.' = -....I.'_....'

J EI

P .

( L ) _ _—1‘-_-. . . . .. . - .
4 eff.. EI . e o . ’ ) ;_
P ‘ o
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METHOD OF ESTIMATING THE GRITICAL LOAD

The method of estimating the lowest critical load is
based upon the principles discussed in referencés 5 and 6
.for the analysis of experimental observations in prodlems
of elastic stadbility. In reference 5, Southwell mentions
that the unavoidable imperfections in practical structures
brevent the realization of the concept of & critical load
at which deflections begin. Instead, the initial deflec~
tions present in practical structures steadily increass
with load and, according to the usual theory, the deflec--
tlons Decome infinite as the critical load is approached.

In references 5 and 6, the relation between load and
deflection for problems of elastic stadbility is also dis=-
cussed. The more general relation given in reference 6

—

v Y
shows that, 1if 5—-—§L is plotted as ordinate agalnst
— 1 - -

¥y =~ ¥, #&as absclssa, the curve obtained when ©P approachss
Pcrit is esgsentially & straight line the inverse slope of

:which is .Pcrit'“ P, , where
¥ 1is deflection at axial load P in a member,

Yy and P, initial values of y and P, respec-
1 : tively.

Poriye» 1lowest critical load.

Pl < P< Popiy .o o 1)

Thus,.if glmultaneous readings of load and deflection re-
corded in a test are plotted as Just descridbed beginning
with any load P, as the initial reading, the value of

Popit = P, is read®ly obtained. The value of Porsy is
then given by the relation

Porit = (Popig = Pl).+ P (2)
The relation between load and deflection can also be
applied %o load and rotation of .a joint. In order to use
this relation in theoretical calculations, thers must be
initial rotation of the joints. This rotation is obtained
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by & fictitious external moment M applied at some Joint,
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applied. The effect of the tension in the tension members
ia such as to reduce the rotations caused by the external
moment M; whereas the effect.of the compresslion 1n the
compresglion members 1is such ag to increase -the rotaitions,.
As the lowest ceritical load is approached, the offects of
compression completoly overshadow the effocts of tenslon
with the result that the rotations become 1infinite.

If tho distribution of the total load W on the
‘structure does not change as W 1increases, then the axial
load in each member is pronortional to W. Thus, if

———=1 iy plotted as ordinete against & - 6, as abscissa,

the curve obtained when W approaches Wepiy 18 esson-

tlally & stralght line the inverse slope of whieh is
Wcrit ~ W:' where

e ig rotation of a joint under the moment ¥
at load W on the structure.

9, and W,, initlal values of 8 and W, respectively.

Werits, Llowsest critical load.

and
W, < W< Wcri‘b (3)

Thus, 1f simultaneous values of load and rotation are plot-
ted oeg just desorlbed beginning with W, as the initlal

load, the value of W,.3i ~ Wy, 1s easily obtained. The
value of Wcrit ig then given by the eguation

Werit = (Wcrit = Wl) + W, (4)

The procedure to be used in estimating the critical
load for a group of structural members is:

1. Assume three values .of W that are knowan to
be less than Wcrit' This condltlion is gatisfled 1if

the values of W are selected so that the axial load
in each compression member is less than the strongth
of that member with both ends pinned.
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each of the assumed loasds W Dby use of equations

glven later.

3., Designate the lowest assumed value of W
and the corresponding value of 6 as W, and 91,
respectively. '

6 - 8
4, Plot the curve of —— 1 ag ordinate
W= W,

; as abgcissa. The three assumed loads

will give two points on this curve, which are suffi-
clent to establish an approximate value of Wgopngy —

¥, and, hence, of Wcrit' In practical calculations,
the actual plotting of the curve can be omitted be~-
cause the inverse slope W,n34 ~ W, would always be

calculated from the numerical values used to plot the
curve. If more than three wvalues of W are assumed,

howsver, it may be of interest asctually to plot the
curve. -

azainst 6 - @

ROTATION OF & JOINT

The rotation B8 of a joint is easily calculated by
the methods of moment digtribution. Either of two equa-—
tions may be used, according ito whether the stiffness or

the seriesg criterion for stability forms the dbasis. (See
reference 1,)

Stiffness Criterion for Stability

Assume that an external moment M 1is applied &t Joint
b in figure 1, The moment -M added to balance this
Joint is distributed among the members as follows:

M S

bc1 .
- E—ET;;_ to member bc1
e 'bca t b b
- —— = 0 member c
t a
£ s be

etc.
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The moment distribution analysis ie now complets as far as
moments at joint b are concerned. (See corresponding
discussion in reference 1.) :

{3 c2
/
/
A B
Qgib_ — - } M, extornal moment
S
N

N
\ c3
®

Filgure 1

According to the definition of stiffness, the moment
distributed to any member must be the rotation of the joint
multiplied by the etiffness of the member. Hence,

- =M iy the rotation in guarter-radlans of Joint b
80y, '

caused by the external moment M. For the purpose of os-

timating ceritical loads, ¥ can have.any finite value.

For the most convenient valus, M = ~ 1, the rotation 6

is, in quartér-radians, '

-

6 = —_— * (5)
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Por etability, the moment in the members and the ro-
tation of the joints must be finlte. The stiffness cri-
terion for stability is therefore (reference 1)

T Sty, >0 (6)

The conditlon of neutral stabllity gives the eritical
buckling load for the structure and 1s obtained by setting
the stiffness stability facbtor IS'y,, equal %o zero, or

z S‘bc = 0 (7)

Formulas (6) and (7) are also derived in reference 1.
The critical load for the structure is odtained by testing
equation (7) for different assumed critical loads; fthe low=
est assumed critieal load that Jjust satisfies squation (7)
is the critical load desired. If the applied load is less
than this lowest critical load, the structure is stadle;
if not, the structure is unsiable. The method of estimat-
ing the critical load is therefore a tool %o ald in find-
ing the lowest critical load that will satisfy equation (7).

Series Criterion fTor Stability
Assume that an external moment M 1is applied at joint
b in figure 2. From the corresponding analysis in refer-
ence 1, it follows that the total moment in members’  da at

joint © ig

¥ Z 8

ba ( 2 3
bl — l+r+1‘ +I‘ +oo-o)
Sbc L S'ba .
or
. u S'ba ‘ 1 i
Sbc + = S‘ba 1l -«
whers
r = Sbc Gbp -spb Gcb ) 18)
Sbc + X S'ba géi.+ z Slcd
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\\\L;g M, external moment
7

‘ag @5//

Pigure 2

According to the definition of stiffness, the total
moment in members dba at joint b must be the rotation
of Joint b multiplied by the total stiffness of members
ba. Hence,

0 1
Spe + 8Ty 1 =1

L

is the rotation in quarter-radiang of jolnt b caused by
the external moment M., For the purpose of estimating
critical loads, M can have arny finite value. TFor the
most convenient value, M = -~ L, the rotation 6 is, in
quarter~radlans,

L 1l
Spe + Z Sipy 1 = v

For stabllity, the moment in the members and the ro-
tation of the Joints must be finite. As stated in refer-
ence 1, the serles criterion for stabillty is therefore

r <1 (10)

The condition of neutral stabllity gives the critical
buckling load for the structure and is obtained by setting
the serles stadblllity factor r equal to unity, or

r =1 (11)
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Formulas (10) and (11) are also derived in reference
1, Thege expresgsiong are sometimes more convenient to uss
than the corresponding formulas (6) and (7). In cases
when the structure is symmetrical about a Jjoint, the ex-
pressions concerned with the stiffness criterion usually
involve fewer calculations. When the structure is symmet-
rical about 2 member, the formulas concernsd with the se-
ries criterion offer certaln advantages. Experience in
the solution of practical problems will dictate which ex-
pressions result in fewer calculations. In any case, ei-
ther set is correct and the method of sstimating the crit-
ical load is & too0l to aid in finding the lowest critiecal
load that will satisfy the equation for neutral stability,
sither equation (7) or equation (11).

CARRY-OVER FACTOR AND STIFFNESS

In order to check the stability of a group of siruc—
tural members by use of the previously given formulas,
additional eguations for the carry-over factor and the
stiffness are required.

Figure 3
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Consider the member iJ - shown. in figure 3, simply
supported at 1 and elastically restrained at J by men=
bers - Jk. The members Jk are also elastically restrained
at ‘thelr far ends k., By a moment-distribution analysis
given in reference 1, the carry-over factor G'ij is

T st
Jk '
ot = G (12)
i 1
J Jostyy + B8l
and the stlffness S'ij is
SH
i3
St = (13)
i -
J 1 Gji 0'15
Substitution of equation (12) in (13) gives
s
i
g1 = (r14)
1

1 - C C
i i 1
J JS"1+2S"]

For member 1ij, +the limiting values of the carry-over
factor and the stiffness given by equations (12) and (14),
respectively, are obtained as follows. When the far end
J ie pinned, there ig no elastic restraint at J and
ZS‘Jk = 0, For this limiting condition, the carry-over factor

far end J 1s fixed, there is complete restraint at J
angd ZS’Jk = o, FPor this limiting condlitlion, the cerry-

over factor C'ij = Gij and the stiffness S'ij = 513.
where

8", .
i
S = : (15)
iJ 1 =~ G354 Gy

Up to this point, all the equations in this report on
stabllity are general. In nearly all of the cases encoun-
tered in practice, however, the cross section and the axial
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load do not wvary along the length of sach member. For
this special case, O34 = Cy3, S"3;5 = 8"353, and 'S35. =

Sjl- In practical problems,_the numerical values for.

these quantities are obtained by uwse of %the tables glven
in reference 2, . _ R

PROBLEMS

The purpose of including problems 1s to demonstrate
the previously described method of estimating critical
loads. ©Six simple problems have been selected to reveal
certain characteristics of the method that should be known
by the practical engineer using it. In order to show the
accuracy of the estimated critical load, the correct walue
of the critical load for sach problem is first established.

The tables of reference 2 were used in the numerical
evaluation of the stiffness and the carry-over factor. Ale
though interpolation in thess tables is unnecessary for
the solutlon of practical problems, interpolation was used
for the solution c¢f these problems to show clearly how the
estimated critical load becomes more accurate as the as-
sumed loads W and W, approach Weorite

In problems 1 to 4, it is assumed that the members
are subjected to low stresses corresponding to the elastic
range where the effective modulus E is equal to Young's
modulus XE. 1In problems 5 and 6, the compression members
are loaded above the elastic range where E < E, In other
words, for problems 1 to 4, the compression members lie in
the long~column range; whereas, in problems 5 and 6, the
compression members lie in the shori-column range. '

Problem 1

Prodblem: To calculate the critical load for the pin~
end strut shown in fisgure 4. -

Compression P

EI = 10,000 1b. in,.2

< ‘L = ]‘-OO in. >

Figure 4, - Problem 1.
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The squations concerned with the stiffnegs eriterion
for stability are used in the solution of thils prodlen,

Tmaodna $+ha awvdkawrnadl mAaman <+ )14 mn ha armmldad a+ 1adnd h
«lice &lC vde Ceveilila. NOKHNOLU o vU UC QUPLLTU Qu gUadly Ve

The correct value of the critlcal load is therefors the

lowest assumed load that will satisfy equation (7).  There
being only one member dbe, the summation sign is omitied.
Beceuso this member be is pinned at the far end .c, the
single prime on Sy, 1is replaced by a double prime. Thus

for this problem, equation (7) becomes
$"ye = O o (18)
For member be

EI = 10,000 1b, in,®

L 100 1in.

o I L P U ., [
VOILSOQUBIHLLLY ,

L. _L_ . /7
J

F

.

From the tables of reference 2, it ig found ﬁhat the small-
est value of P to satisfy equation (16) is the value of

P giving L/j = m. Therefore the correct critical load

is

Pcrit = ‘(‘l’a = 9.87 lb.

which agrees with the value given dy the well=known Euler
column formula

n3EI
Porig = 'EE- (17)

The estimated value of the critical load is glven by
the inverse slope of the approximately straight line ob-
6 - 0

1

‘tained by plotting T
= My

abgcissa, For this problem, W = P and equation (5) be-
come s

as ordinate against 6 - €, asg

6 = 1 (18)
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The values of § are glven in tabla I for a series of

6 - B
assumed loads P; and values of _9 - 6, ang 5———§i are
given for P. =0, 3, and 7 pounds. Table I was made 8K~

tensive in order to show how the estimated critical load
is affected by P, as well as by the values of P at

which the inverse slope 1s computed.

The approximately stralght lines that correspond to
P, = 0, 3, and 7 pounds are plotted in figure 5. Inspsc-~

tion shows the lines corresponding to P, =0 and P, =
3 pounds to be essentially straight. As only twe polints
establish the llne for P, = 7 pounds, no concluslon re-

garding its straightness is Justified.:

rd
l\
-

T =™ Y Ly 3 T a | JP b N NS
if P, = 0, +then the inverse slope bDetween
and P = 2 pounds ils (ses tadble I)

_ 0.002202 - 0.00053%

P - P = = 10.33 1b.
erit 1 0.001101 ~ 0.000983

from which

Popit = (Popgy =~ By) + P, = 10.33 + 0 = 10.33 1b.

The results of a number of calculations of thisg type
for other values of P and E& are given in tadle 1II.
Inspection of this tadle shows that, for any value of Pl,
the estimated critical load becomes more accurate ags the
values of P ©Dbetween which the inverse slope is calcu-
lated approach Pyprity. The accuracy is also increased as
P, approaches Pgopnii. . '

Problems 2, 3, and 4

The purpose of problems 2, 3, and 4 is to study the
effect of the tension in tension members on the estimated
eritical load for a struscsture. In these problems, end D
of the strut used 1n problem 1 is restrained ageinst rota-
tion. by the adjecent member, ba, which is the same size
as member be. (See fig. 6.) In problem 2, member ba _.
has zero axial load. In problems 3 and 4, there is axial
tension in ba of magnitude P and 3P, respectively.
In each problem, 'the commression in member be is of mag-
nitude P,

k-
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Problem Member ba Member be
2 Zoro axial load Compressionm P
3 Tension P Compression P
4 Tension 3P ~ Compression P
EI = 10,000 1b.in.% EI = 10,000 1b,in,2
\ Ay
A i b . ¢

L. = 100 in. L = 100 ian.

14 "
—

Figure 6, ~ Problems 2, 3, and 4.

Imagine the external moment M +to be applied at
Joint Y. The correct value of the critical load is the
lowest assumed load that will satisfy equation (7) wkich
becomes, for prodblems 2, 3, and 4,

S"ba + S"bc = 0 (19)

For esach of members ba and be. in problems 2, 3,
and 4,

I = 10,000 1b. in,2

il

L

100 in,

On calculation of the values of IL/j for each span in each
of the problems, i1t is found by trial that the lowest wvalue
of P satisfying equation (19), or Popits 18

Problem . Porit (303)
13.89
15.41
16,93

H’lnblf\)

The estimated value of the critical load is given by
the inverse slope of the approximately strailght 1ine 0 b
6 ~ &
tained by plottine 5‘:*§A as ordinate against 0 - 91
: 1
as abscissa. For problems 2, 3, and 4, equation (5) be-
comes '



N.A.C.A. Technical Note No., 717 17

: 1
8 = . .. (20)
: S“ba T S"bc

In tables III, IV, and ¥V, the assumed values of P
and the corresponding values of © eare given for problems
2, 3, and 4, respectively. The curves established by the
data 1in these tables are plotted in figures 7, 8, and 9,
respectively. A summary of the corresponding estimated
critlical loads for each problem is given in tadles VI, VII,
and VIII, - : : U

In figure 7, the curve for P, =0 is noticeadly con-

cave upward; whereas, in figures 8 and 9, this curve is def-
initely concave downward. This change from concave upward
to concave downward 1s caused by the tension in member ba,
which results in an overestimation of the critical load
when the tensgion in member ba is zero but an underestima~
tion when the tension 1s equal o P and 3P. (See tabdbles
¥, VII, and VIII.) These same conclusions hold in a lesser
degree when O < P, < Pgriy.

When the method of estimating critical loads is applied
in the solution of practical problems, it is desiradle to
know whether the true critical load is overestimated or un-
derestimated. From problems 1 and 2 it is concluded that,
in the absence of tension members, the estimated critical
loads are all greater than the true critical load, (See
tables II and VI.) From problems 3 and 4 it 1s concluded
that, in the presence of tension members, the estimated
eritical loads are all less than the true critical load.
(See tables VII and VIII.) The region within which all es~
timated critical loads are in good agreement with the trus
critical load cannot be definitely established iIn the gen-—
eral case,

Qualitatively, the region of transition from over-
estimating to underestimating the critical load can be es-
tablished by noting the trends in problems 2, 3, and 4.

In problem 2, the poorest estimate of the critical load
(small values of P and P, ) is 12.8 percent on the unsafe
gside. In problems 3 and 4, the poorest estimates are 69.6
and 122,7 percent, respectively, on the safe side. In
problem 2, no tension member is present., In problem 3, the
size, the axial load, 2nd the number of the tension mombers
are the same as for the compression members. In problem 4,
the axial load in the tension member is three times the

~
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axial load in the compression member. It is therefore
concluded that the transition from overestimating to under-
sstimating the ceritical load will occour when the sizs, ths
axigl load, or the number of the tension members is ampll

relative to the compressicn members.

When all members in a given problem are compressloh
memberg or when the effects of tension are neglected in
the calculation, 28 ig someitimes done in stadbillty prob-
lemg of this type, the agreement of the estlmated critical
load with the calculated critical load will be ag good as
that found in problems 1 and 2. When the effect of. ten-

- 8ion in tension members is considered, the preciglion of
the -estimated critical load can be determined qualitatlive~
ly by reference to prodlems 2, 3, and 4.

Ag in the case of problem 1, the agreement of thoe esg-
. timated eritical load with the caleculated critical load
for prodlems 2, 3, and 4 becomesg closer as -the values of

P between which the inverse slope 1s calculated, approach
Pcrit’ The precision also increases as P approachss

1
Perite (See tables VI, VII, and VIII.)
THE EFFECTIVE MODULUS

Before the theory of thts report can be applled to
problems involving compression members that are stressed
beyond the elasgstic range, as in problems 5 and 6, it is
necsssary to introduce an sffective modulus E so de-

- signed that the results will be in good agreemsnt wilth tho
accepted column formulas.

Compression Members

Most engineers are familiar with the origin of the
accepted column curve for a glven material. At low
gtrosses (stresses less than about one-half the yield
point of the material), the column strength is given by
the Buler formula. At high stresses, lahoratory tests
always show that the column strength falls short of the
value glven by the. Buler formula. An empirical straight
line or & parabolic curve is sometimes used to give the
column strength within this range. '
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The theory of this report gives a duckling load that
is analogous to the strength given by the Euler column
formula. As in the case of the Euler formula, these loads
would not check experimental wvalues at high stresses. 4
reduced strength must therefore be cazlculated consistent
with the accepted column formula for the materisl of which
the members are composed. These galculations are bvest made
by use of the effective modulus E = TEH.

Consider the case of an ordinary column, If the Euler
formula is written

P w2 TR
L b 21
=Sl -
cp
it will give the strength at both low and high stresses.
At low stresses, 7 = 1l; whereas, at high stresses, 1 < 1.

The problem ig to determine how the effective modulus TE
varies with the stress ©P/A. SR

If equation (21) is solved for TE, the following
equation is obtained

2
1 P1 L)
- = = = ee
TE w8 A ¢ <P (22)

The accepted column formula for any material is always
given in terms of the effective slenderness Tatio
(L/ /T p). Thus, if any one of these formulas is solved
for (L/.JC p) and this value is substituted into equa-~

tion (22), there results an equation for the effective
modulus TE +that is a function of the stress P/A.

"For example, consider the case of S.A.E. 1025 steel.
The column formulas for this material are:

-

For < 18,000 1b. per sg. in.

2 .
= T_E_ (23)
1 L)a L T
e .
For 38,000 > E > 18,000 1b. per sq. in.,

: . . N2 ' '
2 - 36,0600 & 1.172 % (%) (24)

By Pl

A
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If equations (23) and (24) are solved for (L/¥ c p) eand
these valuss are substituted into equation (22), the fol-
lowing values are obtained for the effective modulus E =
TE.’ : . . . . .

For < 18,000 1b. per sq. in.,

Tl

(25)

=il

= TE =

‘For 36,000 > > 18,000 1b. per sq. in.,

P }
. 36,000 - ¢
= 1P ’ 4
E = T8 —— o 26
ne A (\ 1.172 t) (26)

Equetion (25) shows that, in the long~column or elag-
tic range, E = E. GEquation (26) shows that, in the shori-
- column range, 2 1is a function of the stress P/A in the:
member and is in no way dependent upon the stlffness or end
fixity of the member.

g =

n

When the compression members of the structure are
stregsed beyond the elastic range, the methods outlined in
this report can also be used to calculate the critlical
load. The procedure is the same as in problems 1 to 4 ex-
cept that, for each assumed load W on the structure,
there 1s a different value of the effectlve modulus &,
These values of E are obtained by use of equations (25)
end (26) if the material is S.A.B. 1025 steel. For any
other material, corresponding equations can be derlved.

Tenslion Members

When the effect of axial load in the tenslon members
is considered, the variastion of E with stress for ton-
sion members can be established, theoretically, by the use
of the double~modulus theory of bonding and of the stresg-
strain ourve of the material. For such calculatlons, how-
ever, the stress—strain curve must be accurately drawn %o
a gultadble scale, Ig the absence of & known or a calcu-~
lated variatlon of E with stress, the_following approxw
imate method can be used to establish E for tensglion mem-—
berss .

1., When the stress is less than-fhe maximum al-
lowed for a column of the same material, use the sgme
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values of ¥ for tension as for compression at the
same stress, R

2., When the stress 1s greater than the maximum

‘allowed for a column of the same material, assume

that & = 0.

The values of E for tension members obtained by
this method will be conservative, Whether or not they ars
too conscrvative is a matter to be settled dy tests. In
the regions of yield point and of meximum tensile strength,
the flatness of the stress-gtrain curve will certainly
cause E +to approach zero. Because the maximum stress al-
lowed in columng is closely associated with the yleld
point, this method offers a convenlent solution of E for

tension memdbers, _ -
Problems 5 and 6

The purpose of problems 5 and 6 is to show that the
method of estimating critical loads preseémted in this
paper gives good results when the compression members lile
within the short—column range. BExcept for the different
dimensions and the fact that the members with axial load
are stressed beyond tho elastic range, these problems are
similar %o problems 2 and 3, respectively.

Problen Member Do Member be
5 Zero axial load '~ Compression P )
6 Tension P Compression P -
) t
< L = 60 in, . L = 50 in. J For problem 5
< L = 50 in, - L = 50 in. For problem 6

Material: S,A.E. 1025 steel %ube continuous from a %o
¢ with the following dimensions:

Diameter, 4 1.625 in. .
Wall thickness, % 065 1in,
Area, A ,3186 gq. in,
Moment of inertia, I +0970 in.4

Figure 10, -~ Problems 5 and 6.
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The esgentianl dimensionsg for problems 5_and 6 are
glven in figure 10, The effective modulus E for any
member is a function of the stress P/A in thot membor.
The numerical wvalue of E for any assuned load P is
thorefore given by equations (25) and (26), the material
being S.A.,E. 1025 steel, By the same methods as used in
the solution of problems 2 and 3, it is found that the
lowest value of P to satisfy equation (19), or Popits

is

Problem Forit(v,)
5 9,420
6 9, 510

The necessary calculations for estimating the criticel
loads for problems 5 and 6 were made by theo same mothods
used for problems 2 and 3 excopt that 1n the calculatlon
of the stiffness of the members the effective modulus
was used in place of Young'!s modulus E, The resgults of
thoso calculations are given in tables IX to XIV,

6 - 8
In figures 11 and 12, ———=3 ig plotted against

P~ P
8 -~ 6, for problems 5 and 6. It is preferabdle, however,
to compare the results given in tables XI and XIV rather
than to draw conclusions from figures 11 and 12,

In problem 5, the axial load in member %ba 1ias zero;
whereag, in problem 6, member ba ie subjected to axlal
tension equal to the ax®al compression of member Ddc,
Comparison of the estimated critical loads for each of
thege problems (tables XI and XIV) shows that the critical
load 1s usually, but not always, overestimated when iLhe
tenslon in member bDa 18 zerc and is usually, but not al-
ways, underestimated when the tension in member ba 1=
equal to the compression in member be. These same conclu=-
sions were found for problemg 2 and 3. '

Comparigon of the precision of the estimated critical
loads for problems 5 and 6 (tables XI and XIV, respective-
ly) with the precision of the estimated critical loads for
problems 2 and 3 (tables VI and VII, respectively) 1s not
Justified. ¥For problems 2 and 3, the series of estimatod
critical loads are based upon values of P taken at intor-
vals of roughly 10 percent of P,.j43 whoreas, for problems

B and 6, this interval was not malntained. When the members
lie in the short—column range, an estimated critical load
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based upon small values of P, which 1lie in the elastic
range, gives an estimated critical load much higher than
the true critical load. OConsequently, in problems 5 and

6, the assumed values of P for which the estimated crit-
ical load was obtained were mads to corqespond to wvalues of
P/& that are sssocisted with the short—column range.

In the solution of any problem, it is necessary only
that the assumed loads be less than the true critical load.
As the assumed loads approach the trué critical load, the
precision of the estimated critical load is increascd.

(See tables XI and XIV.) It is therefore desirable to ox-
ercise the best judgment possible in the selection of tHe
assumed loads., . In any case, however, the method of osti-
mating the critical load as dcscribed in this paper ' should
be regarded as a to00l %o be used in finding the lowest
critical load that will satisfy the equation for neutral
stability. If 1%t is dosired that the estimatod critical
load be conservative rather than err on the unsafe side, the
offect of the axial load in the tension members should be
considered in the calcfilation. o

CONCLUS IONS

1. If the distribution of the total load W on the
structure does not change as W increases, then the axial
load in each member is proportional to W. Thus, if
8~ 6
§~—~ﬁi is plotted as ordinate agzainst 8 - 6, as absciss

- W, .

the curve obtained when VW approaches W, p3y . 1s essentialu

ly o straight line the inverse slope of which is Wgpig =
W,, where

& is the rotation of a Jjoint under the moment M
at load W on the structure.

8, and W,, initial values of § and W, respec~
tively.

Wcrit'. lowest critical load.
and

wl <¥W < Wéfit
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Thus, 1f simultaneous values of load and rotation are plot=
ted as just described beginning with W, as the initial
lca&, the value of Wgpig - W, 1s easily obtained. The
value of W,pyy 1s then given by the equation

Wcrit = <Wcrit = Wl) + Wl

. 2+ The rotation 6 of a joint can be calculated by
.the methods of moment distribution. The equation to be
used deboends on whether the stiffness ot the seriess crite-—
rion for stability forms the basis of the calculation

3. For loads within the elastic range, the estimated

tical load more closely agrees with the cglculated crit-

Ie]
ical load as the values of W ‘betwcen which the inverse
slope is calculated approach Weritr The agreement i1g

also closor as W, approaches Wopig.
4+ TFor loads beyond the elastlc range, the results of
computation have shown that conclusion 3 usually, but not
always, avplies. In cases where it does not apply, tho
errors are of the order of a fraction of 1 percent. For
practical design calculations, conclusion 3 therefore
holds for loads beyond the elastic range as well as for
loads within the elastic ranze.

5. VWhen all members in a given problem are compres-
sion members or when the effects of tension are neglectod,
as ls sometimes done in pracéical caldulations, the calcu-
latod critical load is overestimsted. When the effect of
. tengion in the tension mombers is considered, however, the
calculated critical load is undorestimated., The reglon
within which all estimated eritical loads are in good agroo—
ment with the caleulated critical load cannot be definitoely
established in the general e¢ase. Tho transition from over-—
estimating to undercstimating the calculated critical load
tends to occur, however, when the size, the axial load, or
the numbor of tension members is small relative to the com~
prosgion members. In many practlical problems, the preci-
sion with which the estimated critical load agrees with the
calculatod critical load can be qualitatively determined
by reforence to tho problems of this repord.

6« The mothod of ostimating the eritical load sghould
always be regarded as a tool to aid in finding the lowest
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load that satiafies the egquation for neutral sitadbility.
This lowest load is ths caoleulated criitical load for the
problemn,

Langley Menmorial Aerocnautical Laboratory,
National Advisory Comnittee for Aeronautics,
Langley Field, Va,, June 8, 1939,
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. Caleulated Data for Problem 3
Colgulated Dalo. for Problem 1
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Fr o0 Bx 4.2 b. F*2.8 ‘b P=0 P w5l b F= LT b
©, % 0.00 blaible 7 8,20.0079424 B, -0.013181 p 9 0, = 0.000b6 67 9, » 0.005e844 8, = 0, QobT033
P ;] - 5:-8 | g 3-8 - -8 - K51 -8 | 0-98 .g, |28
-8, o a-9, arh 8-8 =T 0-9 BoR 8-0, o o-6, P-F
diam |/ radian (m_d'mn) i radiay rqdia) ) i ) i ian
(Ib.) (padin) 41b, (md.mn)* (odien)) rad) )(A-Ib.) {I)] E Y 9(41&. (n4 9“4-“%". (ﬂ“ﬂ?aa 4ib.
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) 00700T]| 0083410 (0,0002435T 1.1 006185 |-.0005512 |-0.00002474
AL 00%4229| 0007563 | nood 1007 34 0058251 ~.00084 36 ~. 00024812,
42 0077434| 0o1L1LT [.000%0398(0 Sl 005 -00OTER3 [-.0001926! |0
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TABLE II

Summary of Estimated Critical Loads

for Problem 1

[Pority (theoretical) = 9.87 11, ]

Yalues of P

P between which Porit (6stimated)|P,.;; (estimated)
slope la calculated . (theoretical)
(1p.) (1b.) (11.) crit
1l and 2 10.33 1.047
o 4 and 5 10,10 1.023
8 and 9 9,89 1.002
. 4 and 5 10.03 1.016
8 and @ 9.88 1.001




Summary

TABLE ML

for Problem 2

of Esfimated Critical Loods

[ Porit {theoretical) ~ 13.84 b1

TABLE NIIL

Summnrg of Eelimated Critical Laads
for Problam 4
[ Pyryt (thesretical) = #.93 16.]
Valyes of P
P fbetween which |Rilesimaied) m;ﬂ
st Is caleula it
() ™G ) |
17 and 34 -3.84 -0.327
0 6.8 and 8.5 2.6b A57
(3.6 and 153 15.75 430
| 8 and 8.5 6.08 oA
5. 3.6 and 153 le.i3 356
e | 136 and 153 l6.37 0.96]
TABLE XL

Sumn"\arg of Estimaded Critical Loods
for Problem §

[ Py (heorefical) <9320 b,

Values of P
A befween wh:;::hd I’c,.-,f(nfndd&i.\‘:_“i":*f)
slope Is calcu Pt (Hhenti
(1b) (k) () fil
L4 and 2.8 15.67 1128
a 56 and 7.0 t4.7e 1.063
1L2 and 2.6 19.96 1.00§
N 5.6 and T0 14.54 1.047
-2 L% and 2.6 13.94 " 1,004
9.4 1.2 and 126 3.9 . 1,801
TABLE ™IT
Summary of Estimdfed Crifical Loads
for Problem 3
[ Pyrit lihearetical) = 15.4 1. ]
Values of P
P |petween wblor P,,-f(.ahmqw;" simated)
i lated e,
(lb.) slope Eljgihun Ub) 2 it
Le and 3.2 4.8 0,304
0 b4 and 8.0 H.69° .12
12.8 and 44 15.33 .995
L8 6.4 and 8,0 15.50 6.0Te
’ 128 and 14.4 15.38 396
0.2 12.8 ond 14-.4 15,4} 1.000

Valves of P
P [betwesn which | By (estimatedFartt eatimated)]
slope. i3 caloulatfed 2if{theoreticed
(b {1b.) ()
5734.8 and §372.00 1,995 1273
0 |1009.2 ond TedbA| 9T9L0 (.039
62836 ond 3208  feost Loi9
7.2 . .2 8%
57248 100%.2 and Tb4b.4] Ge6s
§283%6 and 87208 95585 i.o14
r:r;u-.lf $263.6 and §720.0 i i5e5.0 Lots

4TL “of hof Teategoeg ‘YO V'K

'L’y Teueg



) . . I
TABLE 1T TASLE XL
Stiffness Values for Problem & Stiffress Values for Problem 6
Membar be
- Members ba and bc
| 58 +8¢ » ]
p .& r _L.; (Jjj,ﬂ: s be T bal - ‘E = _EE:'., ( J_?‘Zﬁ- s, 3% | Stet 5
() a 28,900,090 | S4,35% o 40,769 | 74
51348 | 18,000 | 28,0m,000 | S4382 [ zames | zame | snam 0 ¢ 1,000,000 ) 4,359 ) O 4% 1 40,760 | Lo
a378.0 | 20,000 | 27 4kdo0a| 33,707 20,568 | 4 m8 47348 | 18,000 | 28,018,000 4,302 | L2903 5404 | 23,542 | K, 046
13092 z-}.:oon ﬁ;‘ﬂ. 000 | drem 0038 m"“’. M:“., #372,0 | 20,000 | 27, bed,000 33,707 | 24856 | SA,T% | 20,568 M, 215
Tudir | 24,000 | 24890000 48,33 | 2AMind | 10,415 | 44388 7009.% | £2,000 | 24,627,000 | 51,698 | 26028 | 53,031 | te,Me | 0047
82836 | 26,000 2a,478,000( As,e38 | sosos v:,oll.s 56,008, WAk A | 04,000 | 24,890,000 | 48,386 3.8i124 | Jz034 | 10418 | oraaq
ajeos | 28000 | 1, 35000| 3596 | aarde | oges | e3,04m §283.6 ) 26,000] 22,478,000 | 43,636 | 50008 | 44625 | R08.8| 5157
. ' ' | . o;qm.b 28,000 | 19,385, 000 7, e R4S | 45150 | -10,922 34,208
E- 'E-{ “n'n] 'E" %{- &GDOO"’.]
1. N
For mumber ba: PO, %-0, B =28x10°Ib par s¢in,
L « 4+ H
(—]—)'#- 0, and 5%, = 3.397x10* (b in.
TABLE X - TABLE XL
Colovlated Dola for Problem 6
Colculated Duola for Problem 5
F0 B =57548 b, | F = WheA b, Bro Po~ 5134.6 1B, P A4 T,
p o 8,=0.13380%(0°* | B =o.1388x10*% |8, - osasionin™ 6 gm0zt x it | @ xomaenit* | & soigois ot
0-0, (2% | g-8 [ 28 | 9-6 [ 2D © g-8, [22% le-e |28 | 6-o [-S=B
1. P"P. ; P‘P| () F'P' . ] 'p_‘pl ] P"P, ] P"P.
Q i radion A i dian } i i radiany/ radian
b (fradian) \(radian) {radlan) | reglon)(radlanyoadion) (el (1b) | goodan)| (radionty -lgcn vl ¢ raliny rosfon) rofipn)
] 0,13560xHJ0 o arzem iy o
57348 | .7a08 | .cac0exib|oomersi®o ginaa | aeme | oomzasfesizranso
©372,0 | 10338 (o4 .o .umuwﬂo.mm'ﬂ @reo | 4 [ onfa | .ommy | oot fommestu
T009.% | 19847 | ot487 09256 AN S J009.2 | 4T K10 ORB0T | Ofe80 (044
Teded | 22530 | o950 |Liqee | osmwe | memr o ) Tedeh | geos | oomr | eawse [Leserr [amres [0
03036 | .27TH |a3Te |37 |.oses | eo7e | .ojzdbxiOlostiatuis arese | 1928 | ovope | Lclser | ot | meser | ossesestosemcun
41208 | 43384 |.2pond (33638 | .skooo B0 [.udsb Ll.swr s3z0.8 | .pAzas A JHURIE | L leRIT U4 45220 | LoaTas
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TABLE XIV

Summary of Estimated Critical Loads

for Problem 6

[Porit (theoretical) = 9,510 1b. ]

Values of P

& slo;:tgzsiaggiizted Porig (estimated) Popyy (estimatod) )
P .. thsoretical
(1B ) (1%.) (1be) orit |
5,734.8 and 6,372.0 7,715.,2 0.811
0 7,009.2 and 7,646.4 8,546,1 .899
8,283.6 and 8,920.8 9,442.6 .993
7,009,2 and 7,646.4 8,761,5 «921
5,734.8]
8,283.,6 and 8,920.8 9,532,.,4 1.002
7,646.4(8,28%3.8 and 8,920,8 9,673.6 1,007
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